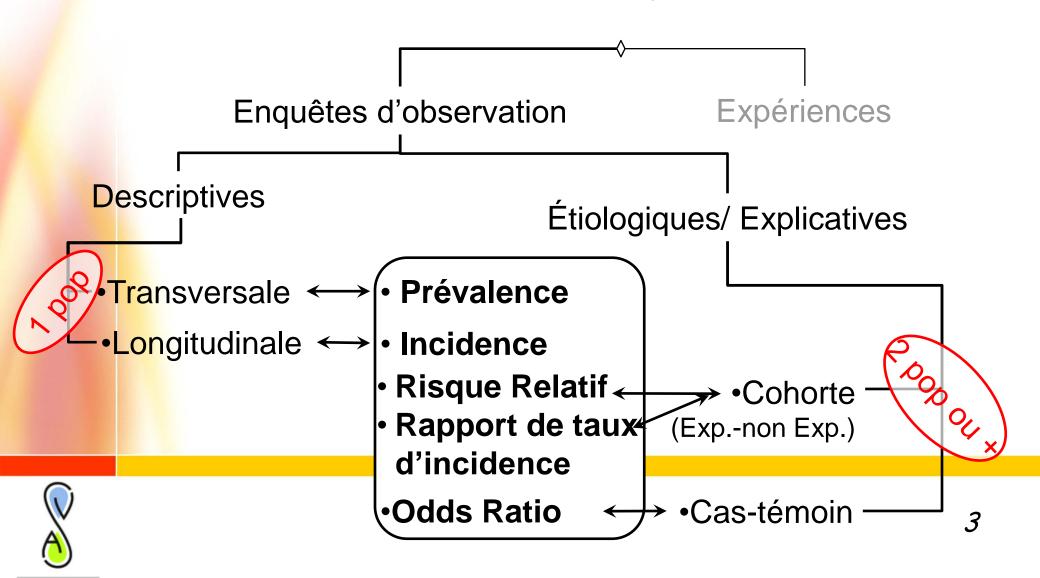


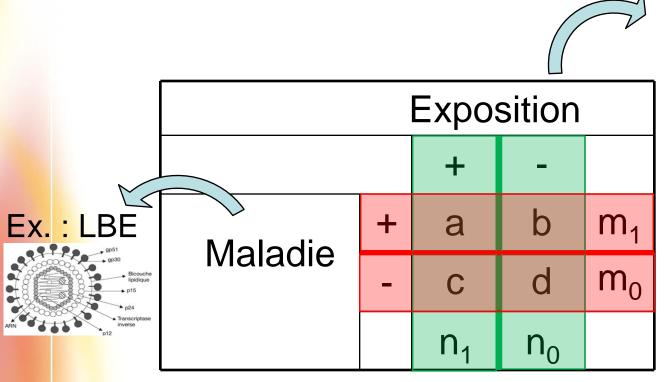
Chapitre 2. Epidémiologie analytique 2.1 Etudes de cohortes et Cas-Témoins

Karine Chalvet-Monfray


Introduction

Objectifs:

- Décrire et comparer les caractéristiques, avantages et inconvénients des études exposés / non-exposés et cas-témoins
- Savoir distinguer Risque Relatif, Odds Ratio et Rapport du Taux d'incidence et connaître leur utilisation;
- Savoir calculer ces indices et estimer leur intervalle de confiance.



1.1. Etudes en épidémiologie

VetAgro Sup

Association maladie exposition

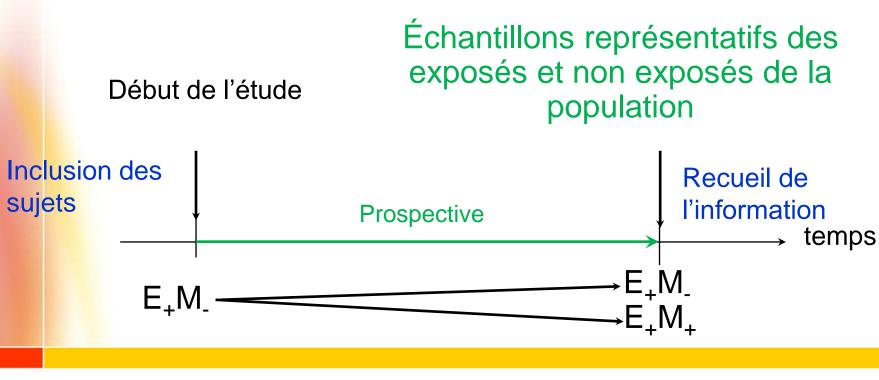
Ex.: écornage

maladie contrôlée dans l'échantillon Étude Cas-Témoin

Exposition contrôlée
dans l'échantillon
Étude Cohorte

Plan du cours

- 1. Etudes de cohortes Exposés / non-Exposés
- 2. Etudes cas-témoins


1. Etude de cohortes exposés / non-exposés

- 1.1. Principe
- 1.2. Protocole
- 1.3. Indicateur et Analyse

1.1 Principe de l'étude de cohorte

 Comparaison de l'incidence d'une maladie chez des sujets exposés et des sujets non exposés

 $E_{M_{-}} \xrightarrow{} E_{M_{-}}$

Risque de maladie R₀ et R₁ dans une étude cohorte

Exposition					
		+	-		
Maladie	+	а	b	m_1	
	-	С	d	m_0	
		n ₁	n ₀		

$$R_1 = \frac{a}{n_1}$$

$$R_1$$
 risque de maladie chez les exposés $R_1 = \frac{a}{n_1}$ $R_0 = \frac{b}{n_0}$ R_0 risque de maladie chez les non-exposés

1. Etude de cohortes exposés / non-exposés

- 1.1. Principe
- 1.2. Protocole
- 1.3. Indicateur et Analyse

1.2. Protocole

- Point important : choix des sujets : choisir des exposés et des nonexposés qui devront être suivis pendant toute l'étude
- Contraintes:
 - -> maladies à incubation courte
 - -> maladie relativement fréquente
- Avantage :
 Possibilité de choisir les E => approprié lorsque l'exposition est rare
 Possibilité de biais. Les plus fréquents...

Biais de recrutement (de selection)

 E et non-E doivent être comparables sur les autres caractéristiques, sinon risque de confusion Etude du risque de kyste ovarien chez la vache, exposition = antécédent de kyste ovarien : confusion avec l'âge

Solutions possibles:

- stratification même structure d'âge chez les exposés et les non-exposés
- appariement individuel (méthodes d'analyse spécifiques) 1 exposé versus 1 à 4 non exposés comparables,

Biais de perdus de vue

- biais majeur des études prospectives
- La perte de vue en soi n'est pas un biais, il y a biais SI perte de vue liée à la maladie.

Vaches réformées pour cause d'infertilité

Biais de mesure (de classement)

 Mesure de l'exposition : le sujet peut être exposé à l'entrée dans l'étude mais plus ensuite et réciproquement

Mesure de la maladie : travailler en aveugle!

Nombre de sujets nécessaires

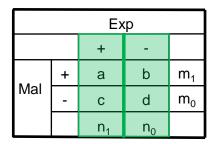
Connaissance a priori de:

- Du protocole choisi,
- Du risque de devenir malade dans les les deux groupes,
- Du risque α choisi (classiquement 5 %)
- De la puissance souhaitée (fréquemment 80%)

Pour un cas simple autant d'exposés que de non exposés, la fonction power.prop.test() dans R permet d'obtenir le nombre minimal nécessaire dans chaque groupe. Pour les cas plus compliqués, il existe des outils pour les calculer.

power.prop.test(p1=0.1, p2=0.2, power=0.80, sig.level=0.05) 14

 $n = 198.9634 \Rightarrow n=200 \text{ dans chaque groupe}$


1. Etude de cohortes exposés / non-exposés

- 1.1. Principe
- 1.2. Protocole
- 1.3. Indicateur et Analyse

1.2. Analyse

Risque Relatif (RR)

- Le risque de faire la maladie chez les exposés est RR fois celui de faire la maladie chez les non exposés.
- Nous connaissons :

$$R_1 = \frac{a}{n_1}$$

$$R_1$$
 risque de maladie chez les exposés $R_1 = \frac{a}{n_1}$ $R_0 = \frac{b}{n_0}$ R_0 risque de maladie chez les non-exposés

$$RR = \frac{R_1}{R_0} = \frac{an_0}{bn_1}$$

Intervalle de confiance du Risque Relatif (RR)

 Intervalle de confiance à 95% (estimé en utilisant l'approximation par la loi normale)

$$ln(RR) \pm u_{1-\alpha/2} \sqrt{\frac{c}{n_1 a} + \frac{d}{n_0 b}} avec \ u_{1-\alpha/2} = 1.96$$

Quand n_1 <100 ou n_0 <100 ou quand conditions du χ^2 pas vérifiées ou quand RR>10

Fonction riskratio() du package epitools

library(epitools)
riskratio(exposition, maladie)

Intervalle de confiance du Risque Relatif (RR)

So What? Quel est l'intérêt de calculer l'IC du RR?

L'association entre exposition et maladie est-elle significative?

Ceci revient à comparer RR à 1.

C'est-à-dire est-ce que le RR est significativement différent de 1 ?

- Soit on réalise un test statistique (test du χ^2 d'indépendance, test exact de Fisher,...) Cf S6
- Soit on vérifie si l'Intervalle de Confiance du RR contient ou non la valeur 1;

Intervalle de confiance du Risque Relatif (RR) et 1

Si I'IC contient 1, association non significative
Si I'IC ne contient pas 1, association significative
soit IC> 1 ⇔ RR significativement >1

Exposition associée à la maladie

soit IC<1⇔ RR significativement <1

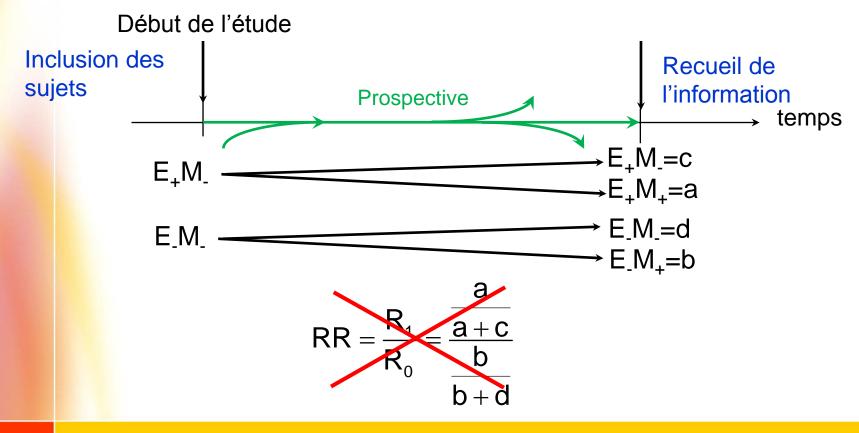
Exposition associée à la protection

Association significative n'est pas synonyme de causalité

Encéphalopathie spongiforme bovine Exemple

E = groupe à risque (abattage d'urgence, signes cliniques...), non-E = autres abattages

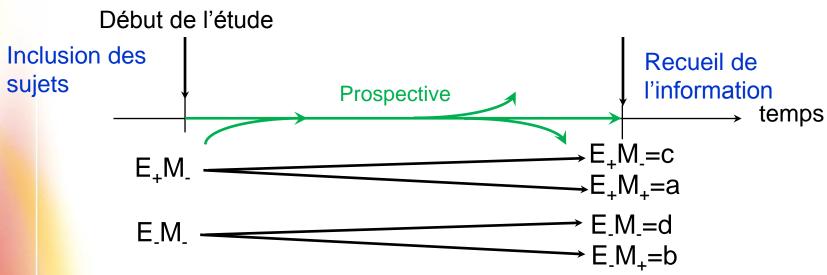
$$RR = \frac{1/1000}{30/1000000} = 33.33$$


IC=[4.55; 244.192] Significativement > 1 (p<0.05)

Le risque est multiplié par 33 pour les populations exposées groupe à risque.

Etude de cohorte prospective ...

... avec des temps de participation différents

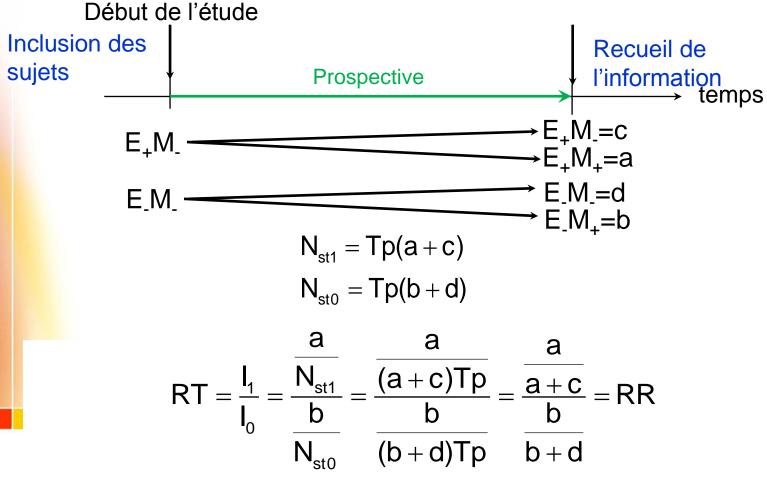


Car tous les sujets n'ont pas le même poids, le même temps de participation

Etude de cohorte prospective ...

... avec des temps de participation différents

N_{st1} = nombre de sujet-temps chez les exposés


N_{st0} = nombre de sujet-temps chez les non-exposés

Rapport de Taux d'incidence=RT =
$$\frac{I_1}{I_0} = \frac{\overline{N_{st1}}}{\overline{N_{st0}}}$$

Etude de cohorte prospective ...

... avec un temps de participation identique (Tp)

Intervalle de confiance du Rapport du taux d'Incidence(RT)

Fonction rateratio() du package epitools

```
library(epitools)
riskratio(c(x1,x2,st1,st2))

x1 = nombre de cas dans le groupe non exposé;
x2 = nombre de cas dans le groupe exposé;
st1 = nombre de sujet-temps dans le groupe non exposé;
st2 = nombre de sujet-temps dans le groupe exposé;
```


Intervalle de confiance du Rapport du taux d'Incidence(RT) et 1

Si I'IC contient 1, association non significative
Si I'IC ne contient pas 1, association significative
soit IC> 1 ⇔ RT significativement >1

Exposition associée à la maladie

soit IC<1⇔ RT significativement <1

Exposition associée à la protection

Association significative n'est pas synonyme de causalité

Encéphalopathie spongiforme bovine Exemple

E = groupe à risque (abattage d'urgence, signes cliniques...), non-E = autres abattages

$$RR = \frac{1/1000}{30/1000000} = 33.33$$

IC=[4.55; 244.192] Significativement > 1 (p<0.05)

Le risque est multiplié par 33 pour les populations exposées groupe à risque.

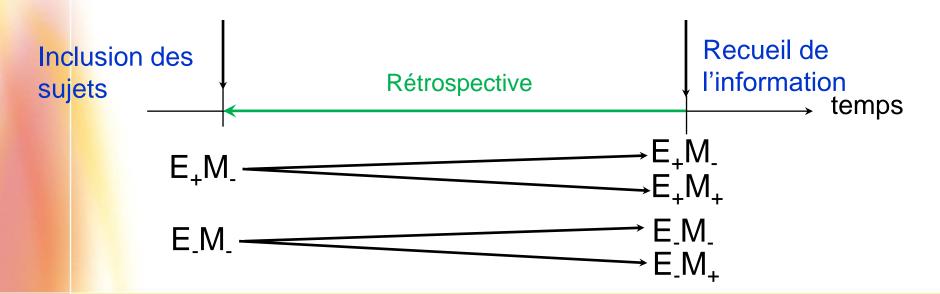
Attention!

A côté de la significativité des résultats, quelle est leur portée biologique?

Test et estimation donnent deux résultats différents

Interprétation : lien statistique 🗸 causalité

L'étude exposés / non-exposés est indiquée lorsque :


- maladie à incubation courte
- relativement fréquente
- plusieurs maladies peuvent être étudiées
- le facteur étudié est supposé avoir un rôle causal important.

Principe de l'étude de cohorte rétrospective ou historique (ex. Toxi-infection)

Échantillons représentatifs des exposés et non exposés de la population

Début de l'étude

Plan du cours

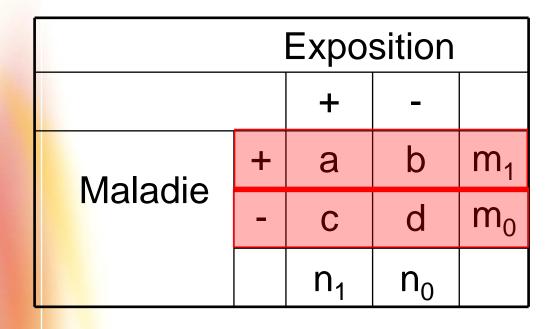
- 1. Etudes de cohortes Exposés / non-Exposés
- 2. Etudes cas-témoins

2. Etudes cas-témoins

2.1. Principe

2.2. Protocole

2.3. Analyse


1.2 Principe de l'étude de Cas-Témoin

 Comparaison de la fréquence de l'exposition antérieure chez des sujets malades et des sujets non malades

> Échantillons représentatifs des malades et non malades de la population Recueil de Début de l'étude l'information Inclusion des sujets Rétrospective → temps

Odds de l'exposition dans une étude cas-témoin

Odds de l'exposition chez les malades

 $\frac{a}{b}$

 $\frac{\mathsf{c}}{\mathsf{d}}$

Odds de l'exposition chez les témoins

2. Etudes cas-témoins

2.1. Principe

2.2. Protocole

2.3. Analyse

2.1. Protocole

- Point important: choix des sujets: malades et des nonmalades doivent comparables pour d'autres caractéristiques (conditions de vie)
- Contraintes:
 - l'exposition doit être relativement simple à mesurer
 - l'exposition doit être relativement fréquente
- Avantage:
 - possibilité de choisir les M => utile pour les maladies rares

Possibilité de biais. Les plus fréquents...

Biais de recrutement (de sélection)

- Biais de recrutement :
 - si pas idem E / non-E,
 - survie sélective (cas de maladie rapidement mortelle)
- Possibilité d'appariement
 (1 cas-x témoins ayant par ex même âge pour se débarrasser de l'effet âge)
 - Pas de biais de perdus de vue mais...

Biais de mesure (de Classement)

Mesure de l'exposition :

 biais de mémorisation : le biais majeur des études rétrospectives

Malformation congénitale et prise médicamenteuse

biais dû à l'enquêteur: travailler en aveugle

2. Etudes cas-témoins

2.1. Principe

2.2. Protocole

2.3. Analyse

2.2. Analyse

Odds Ratio (OR)

	Exp					
		+	ı			
	+	а	b	m ₁		
Mal	-	С	d	m_0		
		n ₁	n _o			

OR =
$$\frac{\text{ratio des odds de l'exposition}}{\text{selon le statut de la maladie}} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{\frac{a}{b}}{\frac{b}{c}} = \frac{\frac{a}{c}}{\frac{b}{d}} = \frac{\text{ratio des odds de la maladie}}{\text{selon le statut de l'exposition}}$$

Relation entre OR et RR et 1

$$RR = \frac{OR}{1 + R_0(OR - 1)}$$

avec R₀ risque de maladie chez les non-exposés

si R₀ << 1 alors RR ≈ OR (maladie rare)

si OR > 1 alors OR > RR > 1 Exposition liée à la maladie

si OR < 1 alors OR < RR < 1 Exposition liée à la protection

Intervalle de confiance de l'Odds Ratio (OR) et 1

Si I'IC contient 1, association non significative
Si I'IC ne contient pas 1, association significative
soit IC> 1 ⇔ OR significativement >1

Exposition associée à la maladie

soit IC<1⇔ OR significativement <1

Exposition associée à la protection

Association significative n'est pas synonyme de causalité

A retenir

L'étude cas-témoins est très répandue: par rapport aux études prospectives :

- Plus rapide, moins couteux
- biais de mémorisation
- estimateur d'association = OR
- approprié aux expositions stables
- possibilité d'étudier plusieurs expositions

Mots de la fin

Comparaison entre les deux types d'études

A retenir

Comparaison étude de cohorte / étude cas-témoin

	E /non-E	K/T
Incubation longue	inapproprié	OK
Exposition rare	OK	inapproprié
Maladie rare	inapproprié	OK
Biais de recrutement	oui	oui
Biais de mesure	oui	oui
Biais de perdus de vue	oui	non
Biais de mémoire	non	oui
Indicateur d'association	RR	OR
Rapide?	non	oui
Couteux?	oui	non

A retenir

- •Selon le type d'étude et le type de comparaison, il faut utiliser le bon indice quantitatif RR (cohorte avec temps de participation identique) vs. OR (Cas-Témoin) vs RT (cohorte avec temps de participation différents).
- Le RR est toujours plus proche de 1 que l'OR.
- Ne pas utiliser forcément l'approximation de la loi normale pour l'estimation des Intervalles de Confiance des RR, des OR.

