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Coding of a model Directed Acyclic Graph (DAG)
the BUGS language
Coding of the model

Clostridium example

Modeling of the dose-response curve related to the ingestion
of Clostridium perfringens.

m Deterministic part of the model, probability that the host
gets sick:

p= 1— (1 _ r)dose
with dose le number of ingested cells

m Stochastic part of the model, number of sick hosts Nsick for
N exposed hosts :

Nsick ~ Binomial(n = N,p =1 — (1 — r)dose)
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Formalization of a model using a DAG - Directed Acyclic
Graph

What is a DAG ?

m a directed graph
(all the links are directed)

= without cycles (loops)
(from each node, and following the links, it is impossible to
return to this node)

m that we use in Bayesian inference to represent conditional
dependencies between nodes.
(you can see a DAG as a mecanistic description of how output
data could be used simulated from input data.)
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DAG formalism

m Nodes

m covariable (rectangle)

m variable (ellipse)
observed variable, latent variable or intermediate variable
Variables corresponding to output data are sometimes shaded

m Links

m deterministic link (or logical link - dashed arrow - link that
could be omitted by writing the model more synthetically)

m stochastic link (solid line arrow - essential link, that cannot be
omitted)
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DAG of the model on our example

Mathematical definition
of links

1— (1 . r)dose,-
m Stochastic links

o Nsick; ~
i=1a7(nb of groups tested . ) )
with different doses) BlnomIaI(N’ PSICk,')

’ m Deterministic links
N Psick; =
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DAG of the model - data (likelihood)

Data

i=1a7 (nb of groups tested
with different doses)
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DAG of the model - covariables (explicative variables)

@ Covariables
N

i=1a7 (nb of groups tested
with different doses)
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DAG of the model - parameters (to estimate)

@ Parameters
N

i=1a7 (nb of groups tested
with different doses)
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Prior information

In this example, we will assume that from prior information about
the unique parameter it is reasonable to define a uniform prior
distribution between -15 and -5 on logio(r),
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Data related to our example

Number of sick persons Nsick; for each group of N; persons
exposed at the dose dose;

> plot(Nsick/N ~ doselogl0, data = d, pch = 16,
+ xlab = "logl0(dose)", ylab = "proportion of sick persons")
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The BUGS project (since 1989)

Bayesian inference Using Gibbs Sampling

Development and provision of flexible software to implement
Bayesian inference on complex models using MCMC.

Some available tools :

m WinBUGS and OpenBUGS
m JAGS (Just Another Gibbs sampler - Martyn Plummer)

m Stan and Nimble (new algorithms added to MCMC, that are
more efficient for some model families, but may also be
inefficient for others)

RevBayes (for phylogeny)

several other tools for specific model families
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Evolution of the number of PubMed citations with
Bayesian in the title from the beginning of the project

Bayesian[TiE!ej X m

Advanced Create alert Create RSS

= Filters Al Timeline s Sorted by: Best match Display options

Save Email Send to

13,389 results

,ﬁ Reset

o-—---------Il.lllllllllllllllll

1989 2020
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Coding of a model in the BUGS language

A declarative language
(the order of the command lines does not matter)
that looks like R

m Declaration of a deterministic node
node <- fonction(some other nodes)

m Declaration of a stochastic node
including input nodes,
i.e. parameters stochastically defined by their prior
node ~ distribution(optionally some other nodes)

BE CAREFUL: a node on which we have data must always be
coded by a stochastic link !
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Code of the model in our example

To be written in a text file or in a string as below.

> model <-
+ "model
+{
+ for (i in 1:Ndose)
{
psick[i] <- 1 - (1 - r) dose[i]
Nsick[i] ~ dbin(psick[i], N[i])
}

logl0r ~ dunif(-15, -5)
r <- 10"1logl0r
F

"

+ o+ + + + + o+ o+
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Some properties of the BUGS language that differentiate it
from R

A node is univariate.

It is necessary to specify the dimensions, the indices, and
explicitely write loops to define vectors or matrices or
multidimensional arrays.

For example, we can write:

v[] v[il]

M[,] M[i,j]
AL,,,] Ali,j,k,1]
M[,j1  vIn:m]
x[y[i]] x[2%j-1]
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Let us build the code of our model step by step

A loop to define all the observations

model
{
for(i in 1:Ndose)
{
Nsick[i] ~ dbin(psick[i], N[i])
}
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Build of the code - add of intermediate variables

All nodes must be defined in the model except covariables.
The order of lines does not matter.

model
{
for(i in 1:Ndose)
{
Nsick[i] ~ dbin(psick[i], N[i])
psick[i] <- 1 - (1 - r)~dosel[il
}
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Build of the code - add of priors

Prior distributions of parameters (here just one) must be defined
outside the loop.

model
{
for(i in 1:Ndose)
{
Nsick[i] ~ dbin(psick[i], N[i])
psick[i] <= 1 - (1 - r)~dosel[i]
}

loglOr ~ dunif(-15, -5)
r <- 10"1loglOr
b
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Other differences between BUGS and R languages

BE CAREFUL,

the BUGS language and the R language are different,

and some differences concern the name of the distributions
and their parameterization.

Refer to the user manual of JAGS or of other languages for a
complete and up-to-date list of the functions and distributions.
The JAGS reference manual:

http:
//sourceforge.net/projects/mcmc-jags/files/Manuals/
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Data and initial values

Implementation of the inference MCMC Simulations

Coding of data

Coding of data is software-dependent.
Here we will use JAGS (MCMC) and rjags.
Data must be defined in a data list (here named data4jags).

> require(rjags)

> datadjags <- list(dose = 10"d$doseloglO,

+ N = d$N,
+ Nsick = d$Nsick,
+ Ndose = nrow(d))
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Implementation of the inference MCMC Simulations

Pay attention to the consistency between the names used
in the model and in the data list

m All the nodes appearing in the model but not defined in the
model, so appearing only to the right of an operator,
(here dose and N)

m as well as the max loop indices (here Ndose)

m and the output of the model (observed data, here Nsick)

must be defined in the data list.

BE CAREFUL to use the same names in the data list and
the model code !

M.L. Delignette-Muller Introduction to JAGS and rjags



Data and initial values

Implementation of the inference MCMC Simulations

Definition of MCMC initial values

Software-dependent coding.

(described here for JAGS and rjags)

The definition of initial values is theoretically required for each
input node and each chain especially for a correct use of the
Gelman and Rubin statistics to appreciate the convergence of
MCMCs (otherwise, for each parameter, the chains all start from
the same value defined by default as a central value of its prior
distribution).

Ex.

> ini <- list(list(loglOr = -12),
+ list(loglOr = -11),
+ list(loglOr = -10))
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Implementation of the inference Batalanclinitigiaues
P @ MCMC Simulations

Simulations

m Build of a model and adaptation

> m <- jags.model(file = textConnection(model),

+ data = data4jags, inits = ini,

+ n.chains = 3, n.adapt = 1000)

n.adapt (fixed by default to 1000) corresponds to the number of
iterations of a phase during which the algorithm is adapted, so during

which the simulated values are not yet MCMCs.
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P @ MCMC Simulations

Simulations

m Build of a model and adaptation

> m <- jags.model(file = textConnection(model),
+ data = data4jags, inits = ini,
+ n.chains = 3, n.adapt = 1000)
n.adapt (fixed by default to 1000) corresponds to the number of
iterations of a phase during which the algorithm is adapted, so during
which the simulated values are not yet MCMCs.
m Burnin phase
> update (m, 3000)
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Implementation of the inference MCMC Simulations

Simulations

m Build of a model and adaptation
> m <- jags.model(file = textConnection(model),
+ data = data4jags, inits = ini,
+ n.chains = 3, n.adapt = 1000)
n.adapt (fixed by default to 1000) corresponds to the number of
iterations of a phase during which the algorithm is adapted, so during
which the simulated values are not yet MCMCs.
m Burnin phase
> update (m, 3000)
m Monitoring of simulations

> mc <- coda.samples(m, c("r"), n.iter = 1000)
> # generally one starts rather with n.iter around 5000
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Autocorrelation
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MCMC trace

All chains should converge to the same limit in term of distribution
(stability and overlap/good mixing of the chains).
Here the mixing seems acceptable.

> plot(mc, density = FALSE)
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Gelman-Rubin convergence diagnostic

For each parameter, the Gelman-Rubin diagnostic is defined by the
square root of the ratio between the variance of its posterior
marginal distribution and the intra-chain variance, which we expect
to be 1 when convergence is reached.

Gelman gives 1.1 as a maximum acceptable value for all nodes
while indicating that one should try to reach 1.00 to get precise
final results from MCMCs.

> gelman.diag(mc)

Potential scale reduction factors:

Point est. Upper C.I.
r 1 1.01
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Example of MCMC chains with a bad overlap

0.0 0.5

1.0

4000 4200 4400 4600 4800 5000

Iterations

> gelman.diag(mc3.3c)

Potential scale reduction factors:

Point est. Upper C.I.
110alpha 1.01 1.02
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Autocorrelation plot

For each chain, plot of the correlation between MCMC iterations
as a function of the lag between iterations.

Here the autocorrelation is very low.

> autocorr.plot(mc[[1]])

0.5 1.0
|

Autocorrelation
0.0
|
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Trace a chain with an acceptable low autorrelation
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Trace of a chain with a stronger autocorrelation that would
need a thinning
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Analysis of MCMCs

Check of the convergence
Autocorrelation
Posterior distributions

Autocorrelation plot for this chain

Autocorrelation
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|10alpha
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Principle of thinning

With a thin of 10 one stores 1 iteration out of 10.
A thinned chain may contain most of the information when taking
up less space in memory.

b
S 1 99 9 .
4 il \ b q
i ! il 1L (Al ¢
24 l h 1! ¢ 1AL Ll
S [ 4] { e
i R 1O Ay oL
$ - I ’ ‘l! ) ' 'n Bl 3 "i l‘ I i Ji¢ | ol 1P d
‘ "' If l. il ® ‘i " N IL “' | il
< | il | ! r & | ¢
T i i q
i b
@
2
! T T T T T T
4000 4200 4400 4600 4800 5000

Iterations

. Delignette-Muller Introduction to JAGS and rjags



Check of the convergence
Autocorrelation
Analysis of MCMCs Posterior distributions

Principle of thinning (2)

After thinning: 100 out of 1000 iterations.
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Principle of thinning (3)

After thinning the number of iterations is low (here only 100).
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Principle of thinning (4)

It is thus necessary to increase the initial number of iterations
(here x10 — longer computation).

> mc3.1c <~ coda.samples(m3.1c, c("110alpha"), n.iter = 10000, thin = 10)
> plot(mc3.1c, density = FALSE, main = "")
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Visualisation of the posterior distribution

> plot(mc, trace = FALSE)

Density of r
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Statistical summary

> summary (mc)

Iterations = 4001:5000
Thinning interval = 1

Number of chains = 3

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
4.93e-11 1.35e-11 2.47e-13 0.00e+00

2. Quantiles for each variable:

2.5% 257 50% 75% 97.5%
2.62e-11 4.00e-11 4.81e-11 5.76e-11 7.95e-11

M.L. Delignette-Muller Introduction to JAGS and rjags



Check of the convergence
Autocorrelation
Analysis of MCMCs Posterior distributions

Credibility intervals

m Classically based on 2.5% and 97.5% quantiles
> summary (mc)$quantiles
2.5% 25% 50% 75% 97.5%
2.62e-11 4.00e-11 4.81e-11 5.76e-11 7.95e-11
m Less classical High Posterior Density (HPD) intervals
> HPDinterval(mc[[1]], prob = 0.95) # here for the first chain
lower upper
r 2.36e-11 7.32e-11

attr(,"Probability")
[1] 0.95
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Difference between both intervals for asymmetrical
posterior distributions
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Conclusion

Now it’s your turn to play with JAGS !
To learn the technical aspects, nothing is best than practice !

You have an introductory guide to JAGS and rjags to help you to start and go

further in particular for prediction and model validation.
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